Local Conservation Laws of Second-Order Evolution Equations

نویسنده

  • Roman O. POPOVYCH
چکیده

Generalizing results by Bryant and Griffiths [Duke Math. J., 1995, V.78, 531–676], we completely describe local conservation laws of second-order (1 + 1)-dimensional evolution equations up to contact equivalence. The possible dimensions of spaces of conservation laws prove to be 0, 1, 2 and infinity. The canonical forms of equations with respect to contact equivalence are found for all nonzero dimensions of spaces of conservation laws.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

Alternating Evolution (ae) Schemes for Hyperbolic Conservation Laws

The alternating evolution (AE) system of Liu [27] ∂tu+ ∂xf(v) = 1 (v − u), ∂tv + ∂xf(u) = 1 (u− v), serves as a refined description of systems of hyperbolic conservation laws ∂tφ+ ∂xf(φ) = 0, φ(x, 0) = φ0(x). The solution of conservation laws is precisely captured when two components take the same initial value as φ0, or approached by two components exponentially fast when ↓ 0 if two initial st...

متن کامل

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

Conservation laws of generalized higher Burgers and linear evolution equations

By the Cole-Hopf transformation, with any linear evolution equation in 1 + 1 dimensions a generalized Burgers equation is associated. We describe local conservation laws of these equations. It turns out that any generalized Burgers equation has only one conservation law, while a linear evolution equation with constant coefficients has an infinite number of (x, t)independent conservation laws if...

متن کامل

Alternating Evolution Schemes for Hyperbolic Conservation Laws

The alternating evolution (AE) system of Liu [25] ∂tu +∇x · f(v) = 1 2 (v − u), ∂tv +∇x · f(u) = 1 2 (u− v) serves as a refined description of systems of hyperbolic conservation laws ∂tφ +∇x · f(φ) = 0, φ(x, 0) = φ0(x). The solution of conservation laws is precisely captured when two components take the same initial value as φ0, or approached by two components exponentially fast when 2 ↓ 0 if t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008