Local Conservation Laws of Second-Order Evolution Equations
نویسنده
چکیده
Generalizing results by Bryant and Griffiths [Duke Math. J., 1995, V.78, 531–676], we completely describe local conservation laws of second-order (1 + 1)-dimensional evolution equations up to contact equivalence. The possible dimensions of spaces of conservation laws prove to be 0, 1, 2 and infinity. The canonical forms of equations with respect to contact equivalence are found for all nonzero dimensions of spaces of conservation laws.
منابع مشابه
Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملAlternating Evolution (ae) Schemes for Hyperbolic Conservation Laws
The alternating evolution (AE) system of Liu [27] ∂tu+ ∂xf(v) = 1 (v − u), ∂tv + ∂xf(u) = 1 (u− v), serves as a refined description of systems of hyperbolic conservation laws ∂tφ+ ∂xf(φ) = 0, φ(x, 0) = φ0(x). The solution of conservation laws is precisely captured when two components take the same initial value as φ0, or approached by two components exponentially fast when ↓ 0 if two initial st...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملConservation laws of generalized higher Burgers and linear evolution equations
By the Cole-Hopf transformation, with any linear evolution equation in 1 + 1 dimensions a generalized Burgers equation is associated. We describe local conservation laws of these equations. It turns out that any generalized Burgers equation has only one conservation law, while a linear evolution equation with constant coefficients has an infinite number of (x, t)independent conservation laws if...
متن کاملAlternating Evolution Schemes for Hyperbolic Conservation Laws
The alternating evolution (AE) system of Liu [25] ∂tu +∇x · f(v) = 1 2 (v − u), ∂tv +∇x · f(u) = 1 2 (u− v) serves as a refined description of systems of hyperbolic conservation laws ∂tφ +∇x · f(φ) = 0, φ(x, 0) = φ0(x). The solution of conservation laws is precisely captured when two components take the same initial value as φ0, or approached by two components exponentially fast when 2 ↓ 0 if t...
متن کامل